CATCH THE BUZZ - Believe it...GMO Bees! EZezine


CATCH THE BUZZ

By David O’Brochta

A breakthrough in the efforts to genetically modify honey bees was recently reported by Christina Schulte and colleagues from Heinrich Heine University in the Proceedings of the National Academy of Sciences of the United States of America.

Schulte et al. reported the creation of a honey bee containing a “foreign” gene — in this case, one that made some of the cells in the bee glow. This is a first in bee research. These researchers did not establish a colony of genetically-modified bees; they only showed that genetically-manipulated queens could produce genetically-modified drones in the lab. It was a proof of concept.

We have known the genome sequence of the honey bee, Apis mellifera, since 2006. The bee genome helps bee biologists learn how honey bees tick, and it has already provided insights. The genome is rich in genes associated with smell, but it has relatively fewer genes associated with taste and immune functions, reflecting evolutionary adaptations associated with their unique lifestyle.

Using genetic technologies in the laboratory to actually manipulate the bee genome in living bees will lead to deeper insights, such as how they fight infections like foulbrood disease or parasites like Varroa mites, as well as the genetic basis for bee behavior.

Imagine you know a little bit about cars and you want to figure out what makes them run. A manual is available, but it’s in some kind of code. One approach would be to take a hammer and, starting with one part at a time, break things and then see how the “mutated” car functions.

“Oh look, now it doesn’t start — that must be a starter thingy,” you might deduce.

“Now all the lights and the radio don’t work — that must be an electrical thingamabob.”

And so on. Pretty soon you would know a lot about how the car works and the role of many of its parts, and the coded manual would make more sense too.

This is pretty much how geneticists might approach the problem of understanding how bees function. Geneticists would not use a hammer, but they would use genetic technologies to manipulate the genome of living bees to see how those alterations affected the organism.

Today there are many technologies that enable scientists to insert genes into chromosomes. In the case of bees, applying those technologies has proven very difficult. This is because insect-genome-modification technologies require physically injecting these technologies (usually bits of DNA) into honey bee eggs, having the eggs hatch and develop into fertile queens, and then getting the queens to reproduce. However, bees do not like having their eggs injected.

The key to Schulte et al.’s success was their innovative approaches to manipulating and controlling bee reproduction and behavior in the laboratory so they could successfully inject their eggs. They have forged an important path that others can follow, albeit a challenging one.

Just as the human genome enables human biology to be understood for the purposes of developing therapeutics and solutions to unwanted conditions, these results represent the beginning of a similar phase of bee research.


David O’Brochta is the director of the Insect Genetic Technology Research Coordination Network (IGTRCN) and is a professor in the Department of Entomology and the Institute for Bioscience and Biotechnology Research at the University of Maryland, College Park. He has an active research laboratory focused on insect genetics and molecular genetics with interests in the development of insect genetic technologies and their application to the study of the physiological genetics of mosquitoes, with particular interest in their disease-vector capabilities. Professor O’Brochta teaches at the undergraduate and graduate levels, is the Head of the Institute for Bioscience and Biotechnology Research’s Insect Transformation Facility, and he is the editor of the Royal Entomological Society’s journal Insect Molecular Biology.